
Finite-size scaling of corner transfer matrices for the two-dimensional Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L185

(http://iopscience.iop.org/0305-4470/21/3/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988) L185-188. Printed in the UK 

LElTER TO THE EDITOR 

Finite-size scaling of corner transfer matrices for the 
two-dimensional Ising model 

Ingo Peschel 
Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 33, Federal 
Republic of Germany 

Received 9 November 1987 

Abstract. The eigenvalue spectra of generalised corner transfer matrices are calculated for 
an Ising model on a square lattice. The predictions of conformal invariance at the critical 
point are thereby verified. 

Corner transfer matrices (CTM) are efficient tools for calculating the spontaneous order 
in exactly solvable models [ 11. In these cases their eigenvalue spectrum was found to 
be remarkably simple. Writing the eigenvalues as exp(-E,), the lowest E,  are equi- 
distant at all temperatures T < T, with the spacing vanishing at the critical point. This 
was found analytically for the limiting case of an infinite lattice. 

At the critical point, on the other hand, the finite-size properties of a system are 
usually more interesting. Here conformal symmetry makes various predictions about 
the properties of conventional row-to-row transfer matrices [ 2 ] .  It  has been shown 
recently that the same is true for CTM [3]. In  this case one considers a system of the 
shape shown in figure l ( a ) .  The order parameter is fixed (or free) along the inner and 
outer circular boundaries and the transfer matrix runs in the azimuthal direction. For 
the Ising model the E ,  are sums of single-particle energies E/ and the prediction of 
conformal invariance is that the lowest E/  are of the form E/ = (21 - 1 ) ~  where Is 1 and 

The peculiar size dependence of E distinguishes it from the corresponding result for 
the row-to-row transfer matrix. It has been checked to some extent in [3] for the case 

Figure 1. Shape of the system: ( a )  in the continuum limit; ( b )  for the case of a square 
lattice with a 90" corner. 
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of a full  corner, i.e. r + 0. In this letter, general values of the inner radius r will be 
considered. This corresponds to corners with some inner portion taken out. C'TM for 
such a situation have not been studied before. They are in a sense intermediates 
between Baxter's original CTM and the usual row-to-row transfer matrices. It turns 
out that they are much better suited to verify (1) than the usual CTM. 

'The lattice geometry for the numerical calculation is shown in figure l ( b ) .  It is a 
square lattice with a 90" corner and radial boundaries along the lattice diagonals. 
There is a slight difference to figure l ( a ) ,  because the inner and outer boundaries are 
not curved. Calculations were done for the Hamiltonian limit (weak vertical couplings 
K2 and strong horizontal couplings K , )  and  also for the isotropic case. The first case 
is much simpler. Writing the CTM as A = e x p ( - K T H ) ,  the operator H can be read 
off to be 

N - I  h - I  

H = -  c 2na:-A ( 2 n + l ) a ~ u ~ + , .  
n = M i l  n = M  

Here the a:: are Pauli matrices, KT is the dual coupling of K ,  (tanh KT = exp(-ZK,)) 
and A = K2/ K f .  The critical point corresponds to A = 1. After introducing fermions, 
H can be diagonalised numerically by standard techniques [4], giving 

(3)  

where a / ,  a: are Fermi operators. Due to the fixed boundary conditions one u, is 
zero, leaving N - M non-trivial single-particle eigenvalues uI = E, /  K T. 

For a full corner ( M  = 0) the spectrum of H has already been determined [3]. 
Plotting w I  against (21- 1) the points follow a linear relation for small 1 if one is below 
the critical temperature. At the critical point, however, such a linear regime is barely 
visible even for N - 100. The comparison with the conformal result is therefore 
somewhat difficult. This changes for M > 0. Then the M smallest u-values of the full 
corner problem disappear and the smallest remaining u are shifted downwards. This 
destroys the regular spacing of the lowest eigenvalues if T < T,, but it creates a linear 
regime right at T,. This is seen in figure 2 where spectra at the critical point for fixed 

H = c u,a:a, +constant 
/ 

21-1 - 
Figure 2. Single-particle spectrum of the operator H, equation (2 ) ,  at the critical point for 
N - M = 20, and various ratios of N /  M :  A, 20/0;  B, 22/2; C, 30/10; D, 40/20. Spectrum 
E is for N ,  M +CO. The curves are guides for the eye. 
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N - M = 20 and various ratios of N /  M are shown. Curve A corresponds to the full 
corner and  curve E to the limit N /  M + 1. In this case one is effectively dealing with 
a strip of width ( N  - M )  and length ( N  + M ) .  H then becomes ( N  + M )  times the 
Hamiltonian of the Ising chain in a transverse field, the spectrum of which is well 
known [5]. 

If one increases the size of the system at fixed ratio N / M  more eigenvalues fall 
into the linear regions and  the lowest ones follow the linear law better and  better. This 
is illustrated in table 1 for the case N /  M = 5. One also sees that the value of w = w ,  
slowly increases with N. Closer inspection shows that it follows the law w ( N ) =  
w(co)  - 6 /  N + O( 1/N2) where b depends on N /  M and w(co)  coincides numerically 
with the conformal result 

27r 
In( N /  M )  ’ 

=-- (4) 

Equation (4) is obtained by rescaling the anisotropic system so that it becomes 
effectively isotropic [ 6 ] .  For this one uses the ratio of the correlation lengths along 
the two axes which near T, is &I(, =cosh  2K,/cosh 2 K , .  The angle 0 = ~ / 2  then 
becomes an  effective angle OeA=4KT<< 1. Using this in (1) and r = M, R = N gives 
the result for w. Actually, one should take r < M and R > N since in the continuum 
theory the order parameter diverges at  the boundaries. This would give a 1/ N correction 
to (4). Similarly, the rescaling will contain modifications in a small system. To avoid 
these complications, one should only compare the asymptotic values of w for the lattice 
and the continuum. From their coincidence one concludes that the shape of the 
boundaries is not important here. This is plausible in view of the small effective angle. 

Table 1. Lowest single-particle eigenvalues of H ,  equation ( 2 ) ,  for A = 1 and N /  M = 5. 
Shown are U = w I  and the ratios U,, = w , , / w .  

3 
15 

3.6790 

1 .oooo 
2.97 18 
4.8604 
6.63 18 
8.3337 

6 
30 

3.7870 

1 .oooo 
2.9923 
4.9613 
6.8904 
8.7618 

9 
45 

3.8250 

1 .oooo 
2.9965 
4.9826 
6.9510 
8.8942 

12 
60 

3.8444 

I .oooo 
2.9980 
4.9902 
6.9724 
8.9407 

Conformal 
result (4)  

3.9040 

1 .oooo 
3.0000 
5 .OOOO 
7.0000 
9.000 

The calculations for an  isotropic system are more difficult. In  this case the CTM is 
diagonalised using the techniques of Kaufman [7] and Abraham [8]. This leads to a 
2( N - M )  x 2( N - M )  matrix R which has the eigenvalues exp(*e,). Jt is obtained as 
a product of corresponding matrices R ,  which are associated with the row-to-row 
transfer matrices from which the CTM can be built. The form of these R ,  is given in 
[8]. It is no problem to set u p  R,  but the wide range of the eigenvalues causes numerical 
problems. Therefore only small systems have been studied, using a Lanczos method. 
Some results are presented in table 2 together with those of the Hamiltonian limit. 
One notices that in those examples the isotropic systems show a better linear spacing 
and  the absolute values are closer to the conformal result. That this should be so is 
not obvious. One might think that the straight boundaries of the lattice system would 
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Table 2. Lowest single-particle eigenvalues for isotropic systems ( F i and  anisotropic system5 
I w ) .  together u i th  the conformal results and  the ratios U , ,  = F , , / P ,  = w , , / w , ,  

M = 2 ,  N = 8 

Isotropic H-Limit 

M = 2.  .Y 7 10 

Isotropic H-Limit 
~- 

F.  W 1.7016 4.0826 
C'onf 1.7799 4.5324 

" I  1 .oooo 1 .oooo 
L J 1  3.0006 2.9253 
1 ' :  5.0200 4.7099 
"4 7.1867 6.5563 
l ' <  9.7703 8.7852 

1.4823 3.5808 
1.5331 3.9040 

1 .oooo 1 .oooo 
3.0026 2.9472 
5.0187 4.7741 
7.1096 6.57 17  
9.4259 8.5581 

matter more in the isotropic case where the opening angle 0 is large, but this does 
not seem to be the case. 

To summarise, the essential features of the eigenvalue spectrum of generalised c TM 

have been presented and the predictions of conformal invariance have been verified 
with great accuracy. One might have expected that cut-off corners are better suited 
for such comparison than full ones, since their inner part can be better represented 
by a continuum model. All considerations were confined to the Ising model but other 
systems like the Potts model can in principle be investigated along the same lines. 

I would like to thank J Cardy, M Karowski and T T Truong for discussions, G Stollhoff 
and W v d Linden for help with the numerics and the Max-Planck-Institut fur 
Festkorperforschung, Stuttgart, for its hospitality. 
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