Finite-size scaling of corner transfer matrices for the two-dimensional Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L185
(http://iopscience.iop.org/0305-4470/21/3/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Finite-size scaling of corner transfer matrices for the two-dimensional Ising model

Ingo Peschel
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-1000 Berlin 33, Federal Republic of Germany

Received 9 November 1987

Abstract

The eigenvalue spectra of generalised corner transfer matrices are calculated for an Ising model on a square lattice. The predictions of conformal invariance at the critical point are thereby verified.

Corner transfer matrices (CTM) are efficient tools for calculating the spontaneous order in exactly solvable models [1]. In these cases their eigenvalue spectrum was found to be remarkably simple. Writing the eigenvalues as $\exp \left(-E_{n}\right)$, the lowest E_{n} are equidistant at all temperatures $T<T_{\mathrm{c}}$ with the spacing vanishing at the critical point. This was found analytically for the limiting case of an infinite lattice.

At the critical point, on the other hand, the finite-size properties of a system are usually more interesting. Here conformal symmetry makes various predictions about the properties of conventional row-to-row transfer matrices [2]. It has been shown recently that the same is true for стм [3]. In this case one considers a system of the shape shown in figure $1(a)$. The order parameter is fixed (or free) along the inner and outer circular boundaries and the transfer matrix runs in the azimuthal direction. For the Ising model the E_{n} are sums of single-particle energies ε_{l} and the prediction of conformal invariance is that the lowest ε_{l} are of the form $\varepsilon_{l}=(2 l-1) \varepsilon$ where $l \geqslant 1$ and

$$
\begin{equation*}
\varepsilon=\Theta \frac{\pi / 2}{\ln (R / r)} \tag{1}
\end{equation*}
$$

The peculiar size dependence of ε distinguishes it from the corresponding result for the row-to-row transfer matrix. It has been checked to some extent in [3] for the case

Figure 1. Shape of the system: (a) in the continuum limit; (b) for the case of a square lattice with a 90° corner.
of a full corner, i.e. $r \rightarrow 0$. In this letter, general values of the inner radius r will be considered. This corresponds to corners with some inner portion taken out. CTM for such a situation have not been studied before. They are in a sense intermediates between Baxter's original CTM and the usual row-to-row transfer matrices. It turns out that they are much better suited to verify (1) than the usual Стм.

The lattice geometry for the numerical calculation is shown in figure $1(b)$. It is a square lattice with a 90° corner and radial boundaries along the lattice diagonals. There is a slight difference to figure $1(a)$, because the inner and outer boundaries are not curved. Calculations were done for the Hamiltonian limit (weak vertical couplings K_{2} and strong horizontal couplings K_{1}) and also for the isotropic case. The first case is much simpler. Writing the стм as $A=\exp \left(-K_{1}^{*} H\right)$, the operator H can be read off to be

$$
\begin{equation*}
H=-\sum_{n=M+1}^{N-1} 2 n \sigma_{n}^{z}-\lambda \sum_{n=M}^{N-1}(2 n+1) \sigma_{n}^{x} \sigma_{n+1}^{x} \tag{2}
\end{equation*}
$$

Here the σ_{n}^{α} are Pauli matrices, K_{1}^{*} is the dual coupling of $K_{1}\left(\tanh K_{1}^{*}=\exp \left(-2 K_{1}\right)\right)$ and $\lambda=K_{2} / K_{1}^{*}$. The critical point corresponds to $\lambda=1$. After introducing fermions, H can be diagonalised numerically by standard techniques [4], giving

$$
\begin{equation*}
H=\sum_{l} \omega_{l} \alpha_{l}^{+} \alpha_{l}+\text { constant } \tag{3}
\end{equation*}
$$

where $\alpha_{l}, \alpha_{l}^{+}$are Fermi operators. Due to the fixed boundary conditions one ω_{l} is zero, leaving $N-M$ non-trivial single-particle eigenvalues $\omega_{l}=\varepsilon_{l} / K_{1}^{*}$.

For a full corner $(M=0)$ the spectrum of H has already been determined [3]. Plotting ω_{l} against $(2 l-1)$ the points follow a linear relation for small l if one is below the critical temperature. At the critical point, however, such a linear regime is barely visible even for $N \sim 100$. The comparison with the conformal result is therefore somewhat difficult. This changes for $M>0$. Then the M smallest ω-values of the full corner problem disappear and the smallest remaining ω are shifted downwards. This destroys the regular spacing of the lowest eigenvalues if $T<T_{c}$, but it creates a linear regime right at T_{c}. This is seen in figure 2 where spectra at the critical point for fixed

Figure 2. Single-particle spectrum of the operator H, equation (2), at the critical point for $N-M=20$, and various ratios of $N / M: \mathrm{A}, 20 / 0 ; \mathrm{B}, 22 / 2 ; \mathrm{C}, 30 / 10 ; \mathrm{D}, 40 / 20$. Spectrum E is for $N, M \rightarrow \infty$. The curves are guides for the eye.
$N-M=20$ and various ratios of N / M are shown. Curve A corresponds to the full corner and curve E to the limit $N / M \rightarrow 1$. In this case one is effectively dealing with a strip of width $(N-M)$ and length $(N+M) . H$ then becomes $(N+M)$ times the Hamiltonian of the Ising chain in a transverse field, the spectrum of which is well known [5].

If one increases the size of the system at fixed ratio N / M more eigenvalues fall into the linear regions and the lowest ones follow the linear law better and better. This is illustrated in table 1 for the case $N / M=5$. One also sees that the value of $\omega=\omega_{1}$ slowly increases with N. Closer inspection shows that it follows the law $\omega(N)=$ $\omega(\infty)-b / N+O\left(1 / N^{2}\right)$ where b depends on N / M and $\omega(\infty)$ coincides numerically with the conformal result

$$
\begin{equation*}
\omega=\frac{2 \pi}{\ln (N / M)} . \tag{4}
\end{equation*}
$$

Equation (4) is obtained by rescaling the anisotropic system so that it becomes effectively isotropic [6]. For this one uses the ratio of the correlation lengths along the two axes which near T_{c} is $\xi_{2} / \xi_{1}=\cosh 2 K_{2} / \cosh 2 K_{1}$. The angle $\Theta=\pi / 2$ then becomes an effective angle $\Theta_{\mathrm{eff}}=4 K_{1}^{*} \ll 1$. Using this in (1) and $r=M, R=N$ gives the result for ω. Actually, one should take $r<M$ and $R>N$ since in the continuum theory the order parameter diverges at the boundaries. This would give a $1 / N$ correction to (4). Similarly, the rescaling will contain modifications in a small system. To avoid these complications, one should only compare the asymptotic values of ω for the lattice and the continuum. From their coincidence one concludes that the shape of the boundaries is not important here. This is plausible in view of the small effective angle.

Table 1. Lowest single-particle eigenvalues of H, equation (2), for $\lambda=1$ and $N / M=5$. Shown are $\omega=\omega_{1}$ and the ratios $\nu_{n}=\omega_{n} / \omega$.

M	3	6	9	12	Conformal result (4)
N	15	30	45	60	3.9040
ω	3.6790	3.7870	3.8250	3.8444	
ν_{1}	1.0000	1.0000	1.0000	1.0000	1.0000
ν_{2}	2.9718	2.9923	2.9965	2.9980	3.0000
ν_{3}	4.8604	4.9613	4.9826	4.9902	5.0000
ν_{4}	6.6318	6.8904	6.9510	6.9724	7.0000
ν_{5}	8.3337	8.7618	8.8942	8.9407	9.000

The calculations for an isotropic system are more difficult. In this case the cTM is diagonalised using the techniques of Kaufman [7] and Abraham [8]. This leads to a $2(N-M) \times 2(N-M)$ matrix R which has the eigenvalues $\exp \left(\pm \varepsilon_{1}\right)$. It is obtained as a product of corresponding matrices R_{n} which are associated with the row-to-row transfer matrices from which the стм can be built. The form of these R_{n} is given in [8]. It is no problem to set up R, but the wide range of the eigenvalues causes numerical problems. Therefore only small systems have been studied, using a Lanczos method. Some results are presented in table 2 together with those of the Hamiltonian limit. One notices that in those examples the isotropic systems show a better linear spacing and the absolute values are closer to the conformal result. That this should be so is not obvious. One might think that the straight boundaries of the lattice system would

Table 2. Lowest single-particle eigenvalues for isotropic systems (ε) and anisotropic systems (ω), together with the conformal results and the ratios $\nu_{n}=\varepsilon_{n} / \varepsilon_{1}=\omega_{n} / \omega_{1}$.

	$M=2, N=8$		$M=2, N=10$	
	Isotropic	H-Limit	Isotropic	H-Limit
ε, ω	1.7016	4.0826	1.4823	3.5808
Conf	1.7799	4.5324	1.5331	3.9040
v_{1}	1.0000	1.0000	1.0000	1.0000
v_{2}	3.0006	2.9253	3.0026	2.9472
u^{\prime}	5.0200	4.7099	5.0187	4.7741
v_{+}	7.1867	6.5563	7.1096	6.5717
v_{6}	9.7703	8.7852	9.4259	8.5581

matter more in the isotropic case where the opening angle Θ is large, but this does not seem to be the case.

To summarise, the essential features of the eigenvalue spectrum of generalised cTM have been presented and the predictions of conformal invariance have been verified with great accuracy. One might have expected that cut-off corners are better suited for such comparison than full ones, since their inner part can be better represented by a continuum model. All considerations were confined to the Ising model but other systems like the Potts model can in principle be investigated along the same lines.

I would like to thank J Cardy, M Karowski and T T Truong for discussions, G Stollhoff and $W \mathrm{v}$ d Linden for help with the numerics and the Max-Planck-Institut für Festkörperforschung, Stuttgart, for its hospitality.

References

[1] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[2] Cardy J L 1986 Nucl. Phys. B 270 [FS 16] 186; 1986 Nucl. Phys. B 275 [FS 17] 200
[3] Peschel I and Truong T T 1987 Z. Phys. B 69385
[4] Lieb E H, Schulz T D and Mattis D C 1961 Ann. Phys., NY 16406
[5] Pfeuty P 1970 Ann. Phys, NY 5779
[6] Barber M N, Peschel I and Pearce P A 1984 J. Stat. Phys. 37497
[7] Kaufman B 1949 Phys. Rev. 761232
[8] Abraham D B 1971 Stud. Appl. Math. 5071

